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Abstract. We investigate the accidental degeneracy of resonances mixed by a Hermitian
interaction, We give general expressions for the codimension in parameter space of any
degeneracy of resonances. In the case of 2 degeneracy of two resonances which produces only
one simple pole in the § matrix, the codimension is four for time reversal invariant interactions
and six when the quantum system is not time reversal invariant. Close to this type of degeneracy
the corresponding energy surfaces are two double cones lying in orthogonal subspaces with a
comemon vertex at a double diabolic point. When the degeneracy of two resonances leads to
one simple plus one double pole of § the codimension is two irrespective of the time reversal
invariant character of the quantum system. Close to this type of degeneracy, the energy surfaces
are a hyperbolic cone and a sphere which lie in orthogonat subspaces and touch one another at
all points on a diabolic circle.

1. Introduction

Accidental degeneracy and level crossings, true or avoided, are important for the
understanding of a wide variety of quantum phenomena [1]. For instance, a quantum
system acquires a geometric phase—the Berry phase—when transported adiabatically around
a path in parameter space [2-4]. This phase is of special importance in cases where the
path includes an accidental degeneracy, sometimes called a diabolic point, i.e. a point in
parameter space where two neighbouring eigenenergy surfaces with the same symmetry
touch one another. Near an accidental degeneracy one often describes the behaviour of
the system in terms of the well known Landau—Zener effect [5, 6] which is the enhanced
transition amplitude between two adiabatic levels at an avoided level crossing. For a recent
review of the nuclear Landau—Zener effect see Thiel [7]. Accidental degeneracies and level
crossings are also important for the understanding of the statistical properties of nuclear
spectra [8,9] and the onset and properties of quantum chaos [1].

Although most of the information on statistical properties of nuclear spectra, as well as
the effects due to interference of nuclear states, is obtained from resonances, i.e. metastable |
quantum states, virtually all the existing literature has been concerned with stable states of
closed systems driven by Hermitian Hamiltonians [1, 8, 9].

In a statistical approach to nuclear scattering and reactions, bound states of a chaotic
system are coupled to one or more decay channels with arbitrary coupling strength between
bound states and continua [10]. In this theoretical framework Rotter [11, 12] investigated
numerically the problem of cross-section fluctuations arising from avoided resonance
overlapping. The statistical theory of nuclear spectra was extended from bound to unstable
states by Sokolov and Zelevinsky [13, 14] but without considering the effect of degeneracy
of resonances in an explicit way,
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It is only very recently that von Brentano [15-17] examined the generalization of the
level repulsion theorem from von Neumann and Wigner [18] from bound states to a system
of two interacting resonances.

In this work we will be concerned with the degeneracy of resonances and the behaviour
of the energy surfaces in a parameter space in the neighbourhood of a degeneracy. In
section 2, we generalize the level repulsion theorem from bound states to resonances and
calculate the minimum number of free real parameters in the mixing Hamiltonian necessary
to produce a degeneracy. In the next section we formulate the problem of accidental
degeneracy of two resonances in parameter space. In section 4 we discuss the shape of the
energy surfaces close to a crossing for the two possible types of two-resonance degeneracy
found in section 2. We end our paper with a summary of our results and some conclusions.

2. Codimension of resonance degeneracies

Consider a complex quantum system, for instance, a highly excited atomic nucleus near
an excitation energy E. Let the system have m open reaction channels and n resonance
states in the given emergy region. A general phenomenological expression for the S matrix
is [10,14,19]

S(E) = Us {1 — iWLE — H]"'WH, (1)

In this expression, the n x » matrix H plays the role of an effective non-Hermitian
Hamiltonian in the internal space,

H=H -iiWWw. (2)

The Hermitian matrix H consists of the Hamiltonian terms and the shift functions.
The m x n matrix W is the matrix of the decay amplitudes which contains the interaction
matrix elements that couple the channels to the levels. The form of the anti-Hermitian
part of H ensures the unitarity of §. When the mean spacing between resonances is small
in comparison with the mean spacing between channel] thresholds and E is far from any
threshold, both matrices are smooth functions of the energy. In a small region in the complex
energy plane the regular variation of these quantities is negligible and we will take them as
constants.

The poles of the S matrix are the eigenvalues of the complex matrix H. When the
interactions are time reversal invariant, the channe] states and the inner basis may be chosen
in such a way as to make the S mairix and the matrix H symmetric. When the interactions
are not time reversal invariant no relations exist among the matrix elements of H other than
those due to the Hermiticity of H# and WW,

Usually, the description of a collision or reaction process is made in terms of well
defined kinematic and dynamic laws and a number of real, linearly independent ‘external’
parameters whose numerical values are not given by the theory. Therefore, we may consider
the § matrix embedded in a population of § matrices smoothly parametrized by a set of ¥
external parameters which take values in some domain of a manifold or parameter space.
In the representation of (1), this implies that H is also embedded in a population of complex
matrices smoothly parametrized by a set of N real external parameters, and all the complex
matrix elements H;; are functions of the real parameters (X1, X2, ..., Xn).

We may now turn to the question of the accidental degeneracy of two resonances, and
we ask: how many parameters must one vary, in general, to obtain a coincidence of two
poles of §7
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We will show that two possibilities present themselves:

(i) When the coincidence of two resonance energies produces one simple pole in . Then,
for interactions which are not time reversal invariant at least six real external parameters
must be varied. When the interactions are time reversal invariant, at least four real external
parameters must be specified.

(ii) When the degeneracy of two resonance energies produces one simple pole plus
one double pole of § at the degenerate resonance energy. Then, at least two real external
parameters should be varied independently of the time reversal invariant character of the
interactions.

To show this, we count the free real parameters in an a-dimensional complex matrix
H with and without two equal eigenvalues. The difference in these two numbers is the
codimension of the degeneracy in parameter space.

2.1. Systems which are not time reversal invariant

In order to count the number of free real parameters in an n-dimensiopal, square complex
matrix H, it is convenient to recail some results from matrix theory [20-22].

Any complex, r-dimensional, square matrix H may always be brought to a Jordan
canonical form E by means of a similarity transformation,

H=KEK™!. (3)

In general, the matrix K is not unique. If V is a square, non-singular matrix which
commutes with E, substitution of KV for K in (3) leaves H invariant. Therefore, if we call
par(H) the namber of independent real parameters in H,

par(H) = par(K) + par(E) — par(V). Gy

In this subsection we will consider the case of a system driven by interactions which
are not time reversal invariant, then H is, in general, non-symmetric. In this case, K has,
in general, n? different complex matrix elements. Therefore,

par(K) = 2n%. (5)

When H has v (v < n) different eigenvalues, E,, £, ..., E,, with multiplicities p;(E;),
the Jordan canonical form E is the direct sum of v square Jordan blocks E;. Each Jordan
block E; is the sum of a diagonal matrix, E;l,, «,,, and a nilpotent matrix N,,,. The nilpotent
matrix N, has no free parameters. Hence, each Jordan block E, has only one complex free
parameter, namely the eigenvalue E;. Therefore, the number of free real parameters in E
is 2v

par(E) = 2v, (6)

A square, complex matrix V which commutes with the Jordan canonical matrix E is
the direct sum of v square blocks V; of dimension ; [21,22]. Each block V; commutes
with the corresponding block E;. The form of the block V; and the number of different,
non-vanishing matrix elements in V; is determined by the number and length of the cycles
(degree of the invariant factors % 1 of det{ E1 — H]) of generalized eigenvectors of H which
belong to the eigenvalue E;. If E; has k; cycles of lengths £,(E;} 2 £2(E;) 2 ... = £, (E)),
the number of free real parameters in the block V; is given by ([21,22])

ki
par(Vi) =2 (25 — DE(ED). M
=1
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Hence, the number of different, ron-vanishing, real parameters in the matrix V is

ki
parth =23 [ 3 s - DB, ®
§=1

Substitution of (8), (6) and (5) in (4) gives the number of linearly independent, free real
parameters in the complex, square, non-symmetric matrix H as

ki
par(H) = 2[,-:2 tv=3Y [Zczs - 1)41,(&)“ ©)
i s=1

where n is the dimension of H, v is the number of different eigenvalues of H and
8(E) 2 £2(E) 2 ... 2 £, (E;) are the lengths of the k; cycles of generalized eigenvectors
of H which belong to the eigenvalue E;.

A general expression for the codimension C(Hgg) of the degeneracy of any number
of interacting resonances of a system driven by interactions which are not time reversal
invariant is obtained substracting par (Hg.g), as given in (9, from 2n%, which is the number
of free real parameters of H when all the eigenvalues of H are different,

k
C(Haeg) = 2[ 3 [Z(zs - 1)8;(3,-)] ~ v}. (10)

i =1

2.2, Time reversal invariant system

Let us now consider the case of a system driven by time reversal invariant interactions, in
this case the matrix H is symmetric, and we write (3) as

H = QETO' (11)

where OT is the transposed of the matrix O, and T is a real n-dimensional, square, symmetric
matrix such that

E=TE'T ‘ (12)
where ET is the transpose of E, and
=1 (13)

The matrix T has no free parameters. The matrix TO" is the inverse of the matrix O
and satisfies the relations

0'0=T (14)
and

oTO =1, (15)
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The matrix OTO is obviously symmetric, hence the matrix equation (14) is equivalent
to a set of %n(n + 1) linearly independent scalar equations. Since O is non-singular,
equation (15) may be derived from (14) and adds no further constraints on O. Then,

par{0Q) = n(n — 1). (16)

As in the previous case, the matrix O is not unique. Let V' be a square, non-singular
matrix which commutes with E and satisfies the condition

VTVIT=1 (17)

then substitution of OV for O in (11) leaves H invariant.

The number of different, non-vanishing real parameters in the matrix ¥V may be obtained
by subtracting the number of linearly independent constrictions implicit in the matrix
equation (17} from the general expresion (7} for the number of real parameters in a matrix
V which commutes with E. To count the number of linearly independent scalar equations
equivalent to (17), we notice that, if ¥V commutes with E, then TVTT and VTVTT also
commute with E. Hence, the matrices TVTT and VTV'T have the same block structure
as V, with submatrices of the same type as those occurring in the blocks V; of V. The
left-hand side of equation (17) is invariant under the operations of transposition and left and
right multiplication by T. From the definition of T (12} it may be seen that the operation of
transposition and left and right multiplication by T leaves the diagonal submatrices in each
block V}; invariant while the off-diagonal submatrices below the diagonal are transformed in
those above the diagonal, and vice versa. Therefore, the mairix equation (17) is equivalent
to a set of as many linearly independent scalar equations as there are different, non-vanishing
matrix elements in the diagonal and supradiagonal submatrices in all the blocks V; of V.
A straightforward count gives this last number for each block V; as Zi] sE€,(E;) [22].
Hence, the number of real independent parameters in the block V; is

&
par(V:) = par(V;} =23 sts(E)). (18)

5=l

Substitution of the expression (7) for par(V;) in (18) gives

k:
par(V) =2 (s — 1)&(Ey). (19)

=1

Adding the contributions of all blocks V;, we obtain the number of independent real
parameters in

&
par(V) =23 % (s — DL (E). (20)

i y=1

Collecting the results in (4), (6), (16) and (20), we obtain the number of independent
free real parameters in the n-dimensional, square complex symmetric matrix H

v &
par) =’ +n=2(n —v) =23 > (s ~ )&(E) 1)

i=1 g=1
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the notation in this expression is as in equation (9).

The codimension C(Hge;) of the degeneracy of any number of interacting resonances of
a system driven by time reversal invariant interactions is obtained by substracting par (Haeg),
as given in (21), from n(n + 1) which is the number of free real parameters of the complex
symmetric matrix H when all the eigenvalues of H are different. In this way we obtain

ki
C(Haeg) = 2[(n —v)+2) Y (s - l)z,(Ef)] (22)
i

s=i

where n is the dimension of H, v is the number of different eigenvalues of H, k;(E;) is the
number and £;(E;) 2 ... 2 £, (E;) the lengths of the cycles of generalized eigenvectors of
H which correspond to the eigenvalue E;.

Although the expressions (10) and (22) are general enough to discuss the properties of
accidental degeneracies of any number of resonances, in the following we will restrict the
discussion to accidental degeneracies of two resonances. An accidental degeneracy of two
resonances occurs when two eigenvalues of H coincide and all the others are different from
these two and different from each other. Then, one block, say E;, in the Jordan canonical
form E, is of rank two, and all the others, E;, By, ..., E,, are of rank one. Two possibilities
arise according to whether or not the block of rank two is diagonal.

2.3. Resonance degeneracy leading to one pole of §

Lat us examine first the case when the Jordan canonical form E is diagonal; the eigenvalues

E, may be arranged in two groups, so that the two equal eigenvalues are in the outlined
square

E= £, : (23)
Ey

E has v = r — | different eigenvalues and n linearly independent eigenvectors.
The matrix [E — H]~! may be written as

o IDUTH 12521 | & ENA
E-HI' = 24
[£ - H] FTE TLE-E (24
where the vectors |1},|2},...,|n} are the columns in K (or O) and the vectors
{11, {21, ..., {n] are the rows in K=} (or OT). All these vectors are right or left eigenvectors

of H but the numerator of the first term on the right-hand side of (24) is defined only up
to an arbitrary similarity {or complex orthogonal) transformation. As may be seen from
(24) and (1), the poles of the § matrix which become degenerate fuse into one simple pole.
Hence, we may call this type of degeneracy, resonance degeneracy into one simple pole of
$ or resonance degeneracy of rank one.

From (23) it is apparent that the first Jordan block in E has two cycles of Jength one

k=2 (E) =6L(E) =1 (25)
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all the other Jordan blocks in E have one cycle of eigenveciors of length one
k=1 LHED =1 3gign. (26)

Substitution of (25) and (26) in expressions (10) and (22) gives the codimension of the
rank-one degeneracy as six when H is non-symmetric and four when H is symmetric. This
result may also be expressed as follows: the minimum number of external parameters that
should be varied to produce a degeneracy of two resonances leading to one simple pole
in the § matrix is four or six depending on whether the quantum system is time reversal
invariant or not.

2.4. Resonance degeneracy leading to one simple and one double pole of 8

Let us now consider the case when two eigenvalues of H coincide and its Jordan canonical
form is non-diagonal.

E= E; . (27

E,

As in the previous case, E has v == p — 1 different eigenvalues but now it has only n — |
linearly independent eigenvectors. A complete set of s linearly independent vectors may
be obtained adding to the set of cigenvectors one generalized eigenvector corresponding to
Eq.

In this case, the matrix [E — H)~! may be written as

I LT T e TR VS TR 1]
E-H =gy Y E—ER T L BB

(28)
i=3

where [1) and (! are right and left eigenvectors of H corresponding to £, but {TE
and |1) are left and right generalized eigenvectors of H also corresponding to E;. The
vectors {1}, {1}, {3),...,|n) are the columns of K (or Q) in that order, while the vectors
(31, (1], (3. ... {n| are the rows of K-! (or TO") in that order. All the vectors appearing
on the right-hand side of (28) are uniquely defined.

From (28} and (1), it follows that, in this case the poles of the § matrix which become
degenerate fuse into one simple and one double pole. Hence, we may call this type
of degeneracy, resonance degeneracy into one simple and one double pole or resonance
degeneracy of rank two.

From (27}, it is evident that the first Jordan block in E has only one cycle of eigenvectors
of length two

ki =1 L(E) =2 (29)
all the other Jordan blocks in E have one cycle of length one,
ki=1 L(EN=1 3gign (30)

These values, when substituted in (10) and (22), give the codimension of a rank-two
degeneracy as two when H is both symmetric and non-symmetric. It follows that the
minimum number of external parameters that should be varied to produce a degeneracy
of two resonances leading to one simple and one double pole in the § matrix is two,
independently of the time reversal invariant character of the interactions.



5602 A Mondragén and E Herndndez
3. Accidental degemeracy in parameter space

In the absence of symmetry, degeneracies are called accidental for the lack of an obvious
reason to explain why two energy eigenvalues, E| and E,, of a typical Hamiltonian should
coincide. If one embeds the Hamiltonian H in a population of Hamiltonians H(X,) smoothly
parameterized by N ‘external parameters’ {X|, X2, ...}, then degeneracy in the absence of
symmetry is a geometric property of the hypersurfaces representing the real or complex
energy eigenvalues in an (¥ 4- 2)-dimensional Euclidean space with Cartesian coordinates
{X1, X2,...,Re E, Im E}. Suppose that, for some set of values of the external parameters,
the complex energies E; and E; coincide, 21l other energies being different from each other,
then, for this set of {X;] values of the external parameters, the hypersurfaces corresponding
to E; and E; touch one another. A small change in the external parameters about these
values will produce small changes in all the other hypersurfaces which, however, will remain
well separated. If we are only interested in the behaviour of the energy hypersurfaces in the
immediate neighbourhood of the crossing, we may suppose that we already know the correct
eigenvectors of H for all complex eigenenergies except for the two energy hypersurfaces
the crossing of which we want to investigate. Using for these last two, two vectors which
are not eigenveciors but which are chosen to be orthogonal to each other and to all the
other eigenvectors we obtain a complete basis to represent H. In this basis the effective
Hamiltonian H will be diagonal except for the elements Hy, and Hy;. The diagonal elements
H\, and Hp are, in general, not equal; Hj; and Hy will also be different from zero.
Therefore, in the following, we need consider only a pair of unstable states of the system,
close in energy, which are mixed by the 2 x 2 effective Hamiltonian Hjxs. To simplify the
discussion it will be convenient to measure the energies from £, the centroid of the diagonal
energy terms, defined as,

€ = 1(Hu + Hp). 3N
Then,

Hova =Elaxa + H (32)
and

H= ( Ij;] I_”K) (33)
where '

A = L(Hy — Hy). (34)

It is convenient to write H in terms of the Pauli matrix valued vector (o, Oy, 0y) as
H=(R-i3I)0 (35)
where R and I' are real vectors with Cartesian components
X; = 1 Re[Tr(Ho:)) (36)
and

Iy = —Im[Tr(Hay)]. (37)
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The eigenvalues of H are given by

€z = &,/ (R —i3T)? (38)
and the corresponding poles of the § matrix are given by
E1,2=g:FE. (39)

From (39) we see that E; and E; coincide when ¢ vanishes. Hence, from (38), the
condition for accidental degeneracy of two resonances may be written as

R — 4T3~ iRy Ty =0. (40)
Now, since real and imaginary parts of € should vanish, we get the pair of equations

Ri-iri=0 (41)

Ry-T3=0. (42)

These equations admit two types of solution according to whether or not H is a diagonal
at the degeneracy.

In the first case M should vanish at the degeneracy and (41) and (42) are only satisfied
if both Ry and "y vanish for the same set of values of the external parameters. In this case,
(41} and (42) define a point in parameter space. In the second case, when (41) and (42) are
satisfied for non-vanishing Ry and Iy these equations define a circle in parameter space. In
this case Hy does not vanish at the degeneracy and the corresponding Hy is equivalent to
a Jordan canonical form with one Jordan block of rank two and all other Jordan blocks of
rapk one. (Miniatura et af [23] derived a set of conditions similar to our second case for
the occurrence of an accidental degeneracy of a non-Hermitian Hamiltonian which drives
an unstable atomic state which decays by photon emission.)

In the case of stable states, I' = 0, and we recover the usual condition for accidental
degeneracy of bound states

|Rel = 0 “3)

which defines a point in parameter space. The diabolic geometry which characterizes
accidental degeneracies of stable states makes it natural to refer to the degeneracies
themselves as diabolic points [1,12]. In the next section, it will be shown that in the
case of accidental degeneracies of unstable states we are also justified in calling the point
or circle defined by equations (41) and (42) the diabolic point or diabolic circle and, by
extension, to refer to the degeneracies of unstable states themselves as diabolic points or
diabolic circles, according to which type of solution we have in mingd.

4. Energy surfaces

The energy surface in parameter space is defined by equation (38). From this equation, the
real and imaginary parts of the energy are given by

Re& = £[3{[(R* — {92+ (R D)2 4 (RE - D)2 @)



5604 A Mondragdn and E Herndndez

and
Imex = FHI(R* — ;T2 + (R-TY]* - (R? - iTH) (45)

These equations define two hypersurfaces in parameter space. We are interested in the
shape of the energy surfaces in the immediate neighbourhood of a crossing resulting from
the accidental degeneracy of two resonant states.

We shall first consider the accidental degeneracy of two resonant states leading to
one simple pole in the § matrix. In this case the conditions for accidental degeneracy,
equations (41) and (42), are satisfied for vanishing R and I, as shown in section 3. The
effective Hamiltonian should have at least four independent free parameters to produce this
type of degeneracy. There are only three independent parameters in R, hence I' cannot
be a fixed vector. Furthermore, since I' and R should vary independently of each other
it is not convenient to represent I' as a vector in the same Euclidean space £ as R.
Therefore, in this case, we will understand equations (44) and (45) as defining the energy
hypersuperface in an eight-dimensional Euclidean space, &, with Cartesian coordinates
{X,Y,Z,u,v, w,Ree, Ime}. The coordinates (, v, w) are the Cartesian components of T,
while (X, ¥, Z) are the Cartestan components of R. In this way, the crossing should take
place at the origin, i.e. at the point R =0and I' = 0.

‘When the Hermitian and anti-Hermitian parts of H commute the problem simplifies.
From

[R 0,40 0] =i(RxT) 0o

we see that, when R -o and I' - o commute, R x I’ vanishes and R - T is equal to RI.
Then, the equations of the energy, (44) and (45), take the simple form

Reer = E=[R| = £+ X2 4+ Y2 4 22 (46)
and
Imey =:F';']P| =:F%V u? + v2 4+ w?, @7

In this particularly simple case the two hypersurfaces representing the real and imaginary
parts of the energy are double cones lying in orthogonal subspaces with the vertices at the
origin.

In general R-o and T - o do not commute, so to study the behaviour of the energy
hypersurfaces close to the crossing point we will approach the origin of the coordinates
keeping (R - I')/{RT") fixed and letting R and T go to zero in such a way that the ratio
R/T is constant.

‘We consider first the case when

R<ir (48)
then the energy equations (44) and (45) may be written as

Reex = £3PI{3 1A — n)? +4n(R - T2 + (1 — )12 49)
and

Imex = FFILIA — )% +4n(R - D22 = (1 = p)1*? (50)
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with

2R\? '
n= (“ﬁ‘) 1)

and R and [* are unit vectors. Expanding the right-hand sides of (49) and (50) in powers
of n and keeping only the first term, we get

Reey ~ +(R-TY[R| = £(R - T)WX2+¥Y2 + 22 (52)
and
Imes = F4IT] = F3vVu? + 2 + w2, (53)

‘We now consider the case when
R>1iI (54)

we write the energy equations (44) and (43) in terms of

¢ = (%)2 (55)

Rees = IRII( - )2 +42(R - D12 + (1 - ' (56)
and

Imes = FIRILI — )2+ 45(R - Y12 - 1 = )/? 57

we proceed as before, expanding the right-hand sides of (56) and (57) in powers of ¢ and
keeping only the first terms we obtain

Reey ~ £|R| = £V X2+ Y2+ 72 (58)
and
Imes = FATIR - ) = FLR - D)Wu2 + ? + w?, (59)
Finally, when
R=3T (60)

the energy equations (44) and (45) take the simple form

Reey =i|R]‘/%(}§- " =:i:\/%(§-f)\/X2+Y2+ZZ (61)

and

Imes = FITY YR F) = 5/ J& - DV 2 + 0. (62)
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From (52), (53), (58), (59), (61) and (62) it follows that, close to the crossing,
the hypersurfaces representing the real and imaginary parts of the energy difference
€ are double cones lying in orthogonal subspaces. The real part of the resonance
energies E; and E; intersect conically in the subspace of £ with Cartesian coordinates
{X,Y,Z,0,0,0,Re E, 0}). Explicit expressions for (X, ¥, Z) in terms of the matrix elements
of the Hermitian part of the mixing effective Hamiltonian are given in (36). The imaginary
part of the resonance energies E1 and E; also intersect corically but in a different subspace
with Cartesian coordinates {0, 0,0, u, v, w,0,Im E}. The Cartesian coordinates (u, v, w)
should be identified with (I';. T, I';) as given in (37) in terms of the matrix elements of
the anti-Hermitian part of the mixing effective Hamiltonian.

Therefore, in the case of a degeneracy of resonant states leading o one simple pole in
the S matrix, any non-vanishing Hermitian or anti-Hermitian mixing interaction will move
the resonance energies away from the degeneracy. There is energy level repulsion and also
level width repulsion.

Let us now consider the case of a degeneracy of two resonant states leading to one
simple and one double pole in the § matrix. In this case the condition for accidental
degeneracy, equations (41) and (42), are satisfied for non-vanishing values of R and T
and, as we saw in section 3, we need at least two free parameters in H to bring about the
degeneracy. For definiteness, we will keep the matrix W of the transition amplitudes fixed
and let the parameters of the internal effective Hamiltonian H vary. Then

WW=F.o (63)

is a constant matrix, and T is a fixed vector. To simplify the notation, it is convenient to
make 2 rotation in parameter space such that the OZ axis is aligned with I'.

In the case under consideration, equations (44) and (45) define two hypersurfaces in
a five-dimensional Euclidean space, &, with Cartesian coordinates {X, Y, Z,Ree¢, Ime}.
The hypersurfaces representing Re € and Ime are in orthogonal subspaces and touch one
another only when both Re ¢ and Im e vanish. it follows that the set of points in the energy
hypersurfaces corresponding io a degeneracy are all in the subspace &£ with Cartesian
coordinates {X, ¥, Z, 0, 0}.

The equation

R-T'=0 (64)

defines a plane IT in £ and a hyperplane Il in & with Cartesian coordinates
{X,Y,0,Ree,Ime}. When R is orthogonal to I, the equation

RR-1rr=0 (65)

for fixed I', defines a circle in the I1-plane. This is the diabolic circle.

In order to examine the energy hipersurface in the neighbourhood of the crossing,
it is convenient to consider the hypersurface € resulting from the intersection of the e-
hypersurface and the [T-hyperplane. The equation of this hypersurface is obtained putting
R-T' =0 in (44) and (45). Then

Reé, = :I:[%{[(RZ _ z11--2)211,'2 + (RZ _ %rz)}luz (66)
and

Imé, = F[HI(R? — T2 — (R? — ;TH'2 (67)



Degeneracy and crossing of resonance ener;gy surfaces
Hence, when R? > iI?,
Reéy = £(R* - }Trz)iﬂ
and
Imé; =0.
Similarly, when R? < 1r?
Reé, =0
and

Imé; = F(AT? — RHV2.
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(68}

(69

(70}

(71)

Let us examine these relations in more detail. To take advantage of the symmetry of

the problem we introduce cylindrical coordinates in parameter space,
X = Acos¢ = % Re[H2 + Ha)
Y = Asing = —; Im[Hy; — Hy]
Z=w= %Re[Hn — Fyl
Iy, =acosy = —Im{H; + Hxl
Iy = asin ¥ = —Re[Hj; — Hx)
[, =—y =—;Im[H; ~ Hzn].
The orthogonality condition (42) may be expressed as
w =y 1Aacos(¢ — x)
then the difference R? — ;"2 becomes
R? - iT% = (A% - 19D){1 4 vy %a% cos’($ — X))}
with

pr=y? L+a/y?
1+ (a%/y?)cos?(¢ — x)

(72)
(73)

(74)
(75)
(76)
)

(78)

(79)

(80)

According to (70) and (71} for each fixed value of (¢ — x), when A is non-vanishing

but smaller then 17, & is purely imaginary, then
ReE, =ReE;, =Ref

and

ImE;p = 30 £[(377 — A1 +y~%a* cos’(p — ))'?

(81)

(82)
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ImE &
ImE 4

ReE

Diabollic
circle

frame
-—

—
—

lrx

Fignre 1. In the case of a degeneracy of two resonances Jeading to one simple and one
double pole in the § matrix, the surface representing the imaginary part of the difference of the
two energies in parameter space is a sphere. The upper and fower hemispheres represent the
imaginary parts of the two neighbouring energies E) and £2. The diabolic circle is the equator,
where Imm £1 = Im E;. In the regime of level width attraction A? < 72, When the magnitude
of the mixing interaction A increases from zero to some value smaller than %j/' , the poles of the
S matrix in the second sheet of the complex energy plane, initialty at the position marked with
dots, move along a straight line parailel to the imaginary axis to the final positions marked with
crosses. In parameter space the system moves in the energy surface from the poles towards the
equator along a meridian circle.

where 0 = —2Imé&.

As long as A? < %}72, there is no degeneracy. When A increases, the difference between
the two half-widths decreases. This is the regime of level width attraction [15, 16]. For
each fixed value of A, we have two complex resonance energies, E; and E», and two poles
of the § matrix at the comresponding energies £, and E; in the unphysical sheet of the
complex energy plane. When A increases, the poles of the S matrix approach each other
moving along a straight line parallel to the imaginary axis, see figure 1.

In terms of parameter space, when A < 17, R* < iI2, and € is purely imaginary,
equation (71) becomes the equation of a hypersphere of radius %I‘. see figure 1,

X2+ ¥24+ 284 (Imé)* = 112 (83)

This sphere is embedded in the subspace & of & with Cartesian coordinates
{X,Y,Z,0,Ime). The upper hemisphere represents é_ as a function of (X, Y, Z). The
lower hemisphere corresponds to €. At the poles of the sphere, A = 0, the mixing
interaction vanishes and the system is unperturbed.

At the equator, when

A=1p &4

the energy difference € vanishes, the two energy eigenvalues are equal and the system

becomes degenerate. Hence, the equator of the sphere is the diabolic circle. In the complex

energy plane, when (84) holds, the two poles of the S matrix collapse into one single pole

and one double pole, located midway between the initial positions of the unperturbed poles.
When

A> s (85)

[ Ll
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the energy difference is purely real, and (68) becomes the equation of a hyperbolic cone of
‘circular’ cross section

X2+ Y24+ 7> —(Ree)? = iI? (86)

when A increases, Ree increases. This is the regime of level repulsion. In the complex
energy plane, the corresponding poles of the S matrix repel one another and move away
along a straight line parallel to the real axis, see figure 2.

AlmE
ReE &
| E,
ReE
Diabolic Re ¢
[P— e circle H
—— — H
: Ee
; X
i >
« H
R !
z o

Figure 2. In the case of a degeneracy of two resonances leading to one simple and one double
pole in the S-matrix, the surface representing the real part of the difference of the two energies
in parameter space close to the degeneracy has the shape of a hyperbolic cone of circular cross
section or diabolic, At the narrowest cross section or waist of the diabolic the two resonances
are degenerate. The waist of the cone is the diabolic circle. In the regime of level energy
repulsion Al > ;1{}72. When the magnitude of the mixing interaction A increases from the -;-17
to some value larger than a %F, the poles of the § matrix in the second sheet of the complex
energy plane move away from the degeneracy along a straight line parailel to the real axis. In
parameter space Re £, and Re £| move up and down respectively on the hyperbolic cone away
from the diabolic circle.

The narrowest cross section or ‘waist’ of the cone occurs when Re e vanishes, i.e. when
the two complex energy eigenvalues are equal and the two resonant states are degenerate.
Hence, the waist of the cone is the diabolic circle.

In brief, we have seen that the intersection of the energy hypersurface with the I1-
hyperplane which contains the crossing points is a hypersurface which has two parts which
lie in orthogonal subspaces. The surface representing the real part of the energy has the
shape of an open sandglass or a diabolic, with its waist at the diabolic circle. The surface
representing the imaginary part of the energy is a sphere with the equator at the diabolic
circle. The two surfaces are embedded in orthogonal subspaces but touch each other at all
points in the diabolic circle.

5. Results and conclusions
in order to study the conditions for the occurrence of an accidental degeneracy of two

resonances, we considered explicitly the mixing of resonant states by a Hermitian interaction.
We generalized the level repulsion theorem from bound states to a system of interacting
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resonances and obtained the minimum number of free parameters in the mixing Hamiltonian
necessary to produce a degeneracy of resonances in the absence of symmetry, We give
general expressions for the codimension of any degeneracy of resonances in parameter
space.

We find that two types of accidental degeneracy of two resonances may happen according
to whether or not the effective complex Hamiltonian at the degeneracy may be brought to
diagonal form by a similarity transformation.

In the first case, the number of free parameters in the mixing Hamiltonian necessary to
produce a degeneracy is four when the mixing interaction is time reversal invariant and six
when it is not. As in the case of degeneracies of bound states, in this case the two poles of
the & matrix corresponding to the energies which become degenerate merge into one simple
pole. The hypersurfaces representing the real and imaginary parts of the resonance energies
in parameter space are double cones lying in orthogonal subspaces with their vertices located
at the same point, which, for this reason, might be called a double diabolic point. In this
case, the level energy difference and the level width difference of the mixed states are never
smaller than the corresponding differences of the unmixed states. There is energy level
repulsion and level width repulsion.

In the second case, the minimum number of free parameters in the effective Hamiltonian
necessary to produce a degeneracy is two irrespective of the time reversal character of the
interaction. The two poles of the $ matrix corresponding to the energies which become
degenerate fuse into one simple pole and one double pole at the degeneracy. Neighbouring
energy surfaces are connected at all points in a circle with diameter equal to the difference in
the half-widths of the unperturbed resonant states which are mixed. This is to be contrasted
with the degeneracy of stable states in which case neighbouring surfaces are connected at a
single conical or diabolic point. Close to the degeneracy, the energy surface has two parts
lying in orthogonal subspaces. The surface representing the real part of the energy has the
shape of an open sandglass or hyperbolic cone of circular cross section, its waist being at
the diabolic circle. The surface of the imaginary part of the energy is a sphere with the
equator at the diabolic circle. It has to be noted that, contrary to what happens in the bound
state, in this type of resonance degeneracy, level energy repulsion does not always hold.
When the spacing of the unperturbed levels is small, the finiteness of the widths removes
the energy level repulsion and a purely off diagonal Hermitian interaction may produce
level width attraction. This effect had been noted previously by von Brentano [15, 16].

Finally, let us notice that, for complex effective Hamiltonains, the codimension (two)
of this type of resonance degeneracy is equal to the codimension of the degeneracies of
bound states of a closed system driven by a real Hamiltonian. This feature might be
related to the agreement between the short-distance behaviour of the nearest-neighbour
spacing distribution derived from the study of irregular closed systems driven by Hermitian
Hamiltonians [8,9] and the nearest-neighbour spacing distribution obtained from the
observation of series of resonances, i.e. metastable quantum states, in nuclear spectra [10]. If
this were 50, it might be an indication that accidental degeneracies of resonances leading to
one simple plus one double pole in the § matrix might be the rule rather than the exception.

In the case just discussed, the topological structure of the energy surfaces at the complex
energy crossing differs from that of bound-state crossings. The diabolic point obtained in
the Hermitian case blows up into a diabolic circle and a sphere whose radius depends
upon the magnitude of the difference of the unperturbed level widths and the magnitude of
the anti-Hermitian part of the mixing inferaction. This new feature gives rise to new and
interesting effects [23,24]. Elsewhere [24] we have discussed the generalization of Berry’s
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phase from bound to resonant states resulting from the different topological structure of the
energy surfaces at the crossing of complex resonance energies.
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