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Abstract. We investigate the accidental degeneracy of resonances mixed by a Hermitian 
interaction. We give general expressions for the wdimension in parameter space of any 
degeneracy of resonnnces. In the case of a degeneracy of two resonances which produces only 
one simple pole in the S matrix, the wdimension is four for time reversal invariant interactions 
and six when the quantum system is nM time reversal invarianL Close to this type of degeneracy 
the wrresponding energy surfaces are two double cones lying in orthogonal subspaces with a 
wmmon vertex at a double diabolic point. When the degeneracy of two resonances leads U, 

one simple plus one double pole of S the codimension is two irrespective of the time reversal 
invariant character of the quantum system. Close to this type of degeneracy, the energy surfaces 
are a hyperbolic cone and a sphere which lie in orthogonal subspaces and touch one another at 
all points on a diabolic circle. 

1. Introduction 

Accidental degeneracy and level crossings, true or avoided, are important for the 
understanding of a wide variety of quantum phenomena [l]. For instance, a quantum 
system acquires a geometric phase-the Berry phase-when transported adiabatically around 
a path in parameter space [2-4]. This phase is of special importance in cases where the 
path includes an accidental degeneracy, sometimes called a diabolic point, i.e. a point in 
parameter space where two neighbouring eigenenergy surfaces with the same symmetry 
touch one another. Near an accidental degeneracy one often describes the behaviour of 
the system in terms of the well known Landau-Zener effect [5,6] which is the enhanced 
transition amplitude between two adiabatic levels at an avoided level crossing. For a recent 
review of the nuclear Landau-Zener effect see Thiel[7]. Accidental degeneracies and level 
crossings are also important for the understanding of the statistical properties of nuclear 
spectra [8,9] and the onset and properties of quantum chaos [ 11. 

Although most of the information on statistical properties of nuclear spectra, as well as 
the effects due to interference of nuclear states, is obtained from resonances, i.e. metastable 
quantum states, virtually all the existing literature has been concerned with stable states of 
closed systems driven by Hermitian Hamiltonians [1,8,9]. 

In a statistical approach to nuclear scattering and reactions, bound states of a chaotic 
system are coupled to one or more decay channels with arbitrary coupling strength between 
bound states and continua [lo]. In this theoretical framework Rotter [ l l ,  121 investigated 
numerically the problem of cross-section fluctuations arising from avoided resonance 
overlapping. The statistical theory of nuclear spectra was extended from bound to unstable 
states by Sokolov and Zelevinsky [13,14] but without considering the effect of degeneracy 
of resonances in an explicit way. 
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It is only very recently that von Brentano [15-17] examined the generalization of the 
level repulsion theorem from von Neumann and Wigner [18] from bound states to a system 
of two interacting resonances. 

In this work we will be concerned with the degeneracy of resonances and the behaviour 
of the energy surfaces in a parameter space in the neighbourhood of a degeneracy. In 
section 2, we generalize the level repulsion theorem from bound states to resonances and 
calculate the minimum number of free real parameters in the mixing Hamiltonian necessary 
to produce a degeneracy. In the next section we formulate the problem 3f iccidental 
degeneracy of two resonances in parameter space. In section 4 we discuss the shape of the 
energy surfaces close to a crossing for the two possible types of two-resonance degeneracy 
found in section 2. We end our paper with a summary of our results and some conclusions. 

2. Codimension of resonance degeneracies 

Consider a complex quantum system, for instance, a highly excited atomic nucleus near 
an excitation energy E .  Let the system have m open reaction channels and n resonance 
states in the given energy region. A general phenomenological expression for the S matrix 
is [lo, 14,191 

(1) 

In this expression, the n x n matrix H plays the role of an effective non-Hermitian 

(2) 

The Hermitian matrix H consists of the Hamiltonian terms and the shift functions. 
The m x n matrix W is the matrix of the decay amplitudes which contains the interaction 
matrix elements that couple the channels to the levels. The form of the anti-Hermitian 
part of H ensures the unitarity of S. When the mean spacing between resonances is small 
in comparison with the mean spacing between channel thresholds and E is far from any 
threshold, both matrices are smooth functions of theenergy. In a small region in the complex 
energy plane the regular variation of these quantities is negligible and we will take them as 
constants. 

The poles of the S matrix are the eigenvalues of the complex matrix H. When the 
interactions are time reversal invariant, the channel states and the inner basis may be chosen 
in such a way as to make the S matrix and the matrix H symmetric. When the interactions 
are not time reversal invariant no relations exist among the matrix elements of H other than 
those due to the Hermiticity of H and WtW. 

Usually, the description of a collision or reaction process is made in terms of well 
defined kinematic and dynamic laws and a number of real, linearly independent 'extemal' 
parameters whose numerical values are not given by the theory. Therefore, we may consider 
the S matrix embedded in a population of S matrices smoothly parametrized by a set of N 
external parameters which take values in some domain of a manifold or parameter space. 
In the representation of (I), this implies that H is also embedded in a population of complex 
matrices smoothly parametrized by a set of N real external parameters, and all the complex 
matrix elements Hij  are functions of the real parameters ( X I ,  X z ,  . . . , X N ) .  

We may now turn to the question of the accidental degeneracy of two resonances, and 
we ask: how many parameters must one vary, in general, to obtain a coincidence of two 
poles of S? 

S ( E )  = Ul(1- iW[E - Hl-'W+)Ui. 

Hamiltonian in the intemal space, 

H = H - i r w W .  2 
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We will show that two possibilities present themselves: 
(i) When the coincidence of two resonance energies produces one simple pole in S. Then, 

for interactions which are not time reversal invariant at least six real external parameters 
must be varied. When the interactions are time reversal invariant, at least four real external 
parameters must be specified. 

(ii) When the degeneracy of two resonance energies produces one simple pole plus 
one double pole of S at the degenerate resonance energy. Then, at least two real external 
parameters should be varied independently of the time reversal invariant character of the 
interactions. 

To show this, we count the free real parameters in an n-dimensional complex matrix 
H with and without two equal eigenvalues. The difference in these two numbers is the 
codimension of the degeneracy in parameter space. 

2.1. Systems which are not time reversal invariant 

In order to count the number of free real parameters in an n-dimensional, square complex 
matrix H, it is convenient to recall some results from matrix theory [20-221. 

Any complex, n-dimensional, square matrix H may always be brought to a Jordan 
canonical form E by means of a similarity transformation, 

H = KEK-' . (3) 

In general, the matrix K is not unique. If V is a square, non-singular matrix which 
commutes with E, substitution of KV for K in ( 3 )  leaves H invariant. Therefore, if we call 
p a r ( H )  the number of independent real parameters in H, 

(4) 

In this subsection we will consider the case of a system driven by interactions which 
are not time reversal invariant. then H is, in general, non-symmetric. In this case, K has, 
in general, n2 different complex matrix elements. Therefore, 

par (H)  = par(K)  + par(E) - par(V).  

par(K) = 2n2. (5) 

When H has U (U < n) different eigenvalues, E l ,  Ez, . . . , E,, with multiplicities pj (Ei ) ,  
the Jordan canonical form E is the direct sum of U square Jordan blocks Ej. Each Jordan 
block Ej is the sum of a diagonal matrix, Eilpix,,, and a nilpotent matrix N,, . The nilpotent 
matrix N,, has no free parameters. Hence, each Jordan block E, has only one complex free 
parameter, namely the eigenvalue Et. Therefore, the number of free real parameters in E 
is Zv 

par(E)  = 2u. (6) 

A square, complex matrix V which commutes with the Jordan canonical matrix E is 
the direct sum of U square blocks Vi of dimension pi [21,22]. Each block Vi  commutes 
with the corresponding block El. The form of the block Vi and the number of different, 
non-vanishing matrix elements in Vi is determined by the number and length of the cycles 
(degree of the invariant factors # 1 of det[El- H I )  of generalized eigenvectors of H which 
belong to the eigenvalue El.  If Ej has ki cycles of lengths el(&) 2 e,(&) 2 . . . > l k ( ( E j ) ,  
the number of free real parameters in the block Vi is given by ([21,22]) 
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Hence, the number of different, non-vanishing, real parameters in the mamx V is 

1 k2 

i #=I 
par(V) = 2~ [ ~ ( 2  - l ) e , ( E i )  . 

Substitution of (8). (6) and (5) in (4) gives the number of linearly independent, free real 
parameters in the complex, square, non-symmetric matrix H as 

where n is the dimension of H, U is the number of different eigenvalues of H and 
t l ( E i )  > &(E;)  > . . . > &,(Ed are the lengths of the ki cycles of generalized eigenvectors 
of H which belong to the eigenvalue Ei.  

A general expression for the codimension C(Hdeg) of the degeneracy of any number 
of interacting resonancw of a system driven by interactions which are not time reversal 
invariant is obtained substracting par(H&,), as given in (9). from 2n2, which is the number 
of free real parameters of H when all the eigenvalues of H are different, 

2.2. Tune reversal invariant system 

Let us now consider the case of a system driven by time reversal invariant interactions, in 
this case the matrix H is symmetric, and we write (3) as 

H = OETO~ 01) 

where OT is the transposed of the matrix 0, and T is a real n-dimensional, square, symmetric 
matrix such that 

E = TETT (12) 

where ET is the transpose of E, and 

TZ = 1. (13) 

The matrix T has no free parameters. The matrix TOT is the inverse of the matrix 0 
and satisfies the relations 

0'0 = T (14) 

and 

OTO' = I. 
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The matrix OTO is obviously symmetric, hence the matrix equation (14) is equivalent 
to a set of 4n(n + 1) linearly independent scalar equations. Since 0 is non-singular, 
equatlon (15) may be derived from (14) and adds no further constraints on 0. Then, 

p a r ( 0 )  = n(n - I). (16) 

As in the previous case, the matrix 0 is not unique. Let V be a square, non-singular 
matrix which commutes with E and satisfies the condition 

VTVTT = 1 (17) 

then substitution of OV for 0 in (11) leaves H invariant. 
The number of different, non-vanishing real parameters in the matrix 1, may be obtained 

by subtracting the number of linearly independent constrictions implicit in the matrix 
equation (17) from the general expresion (7) for the number of real parameters in a matrix 
V which commutes with E. To count the number of linearly independent scalar equations 
equivalent to (17). we notice that, if V commutes with E, then TVTT and W T T  also 
commute with E. Hence, the mahices TVTT and VTVTT have the same block structure 
as V ,  with submatrices of the same type as those occurring in the blocks Vi of V .  The 
left-hand side of equation (17) is invariant under the operations of transposition and left and 
right multiplication by T. From the definition of T (12) it may be seen that the operation of 
transposition and left and right multiplication by T leaves the diagonal submatrices in each 
block Vi invariant while the off-diagonal submahices below the diagonal are transformed in 
those above the diagonal, and vice wersa. Therefore, the matrix equation (17) is equivalent 
to a set of as many linearly independent scalar equations as there are different, non-vanishing 
matrix elements in the diagonal and supradiagonal submatrices in all the blocks Vi of V .  
A straightforward count gives this last number for each block Vi as E:!] st , (Ei)  [22]. 
Hence, the number of real independent parameters in the block Vi is 

k, 

S=l 
par(Vi) = par(Vi) - 2 C s t , ( ~ i ) .  

Substitution of the expression (7) for par(Vi) in (18) gives 

Adding the contributions of all blocks Vi, we obtain the number of independent real 
parameters in V 

Collecting the results in (4), (6), (16) and (20). we obtain the number of independent 
free real parameters in the n-dimensional, square complex symmetric matrix H 
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the notation in this expression is as in equation (9). 
The codimension C ( H k g )  of the degeneracy of any number of interacting resonances of 

a system driven by time reversal invariant interactions is obtained by substracting par(Hkg),  
as given in (21). from n(n + 1) which is the number of free real parameters of the complex 
symmetric matrix H when all the eigenvalues of H arc different. In this way we obtain 

A Mondragdn and E HernrIndez 

where n is the dimension of H,  U is the number of different eigenvalues of H,  k i ( E i )  is the 
number and el ( E t )  > . . . > &,(E;) the lengths of the cycles of generalized eigenvectors of 
H which correspond to the eigenvalue Ei.  

Although the expressions (10) and (22) are general enough to discuss the properties of 
accidental degeneracies of any number of resonances, in the following we will restrict the 
discussion to accidental degeneracies of two resonances. An accidental degeneracy of two 
resonances occurs when two eigenvalues of H coincide and all the others are different from 
these two and different from each other. Then, one block, say El, in the Jordan canonical 
form E, is of rank two, and all the others, E3, E+. . . , En, are of rank one. Two possibilities 
arise according to whether or not the block of rank two is diagonal. 

2 3. Resonance degeneracy leading to one pole of S 

Let us examine first the case when the Jordan canonical form E is diagonat; the eigenvalues 
E, may be arranged in two groups, so that the two equal eigenvalues are in the outlined 
square 

0 

E =  [' E l  E3  .., 1. 
E" 

E has U = n - I different eigenvalues and n linearly independent eigenvectors. 
The matrix [ E  - HI-' may be written as 

where the vectors 11). 12). ...,I n) are the columns in K (or 0) and the vectors 
(11, (21, . . . , (nl are the rows in K-' (or OT). All these vectors are right or left eigenvectors 
of H but the numerator of the first term on the right-hand side of (24) is defined only up 
to an arbitrary similarity (or complex orthogonal) transformation. As may be seen from 
(24) and ( I ) ,  the poles of the S matrix which become degenerate fuse into one simple pole. 
Hence, we may call this type of degeneracy, resonance degeneracy into one simple pole of 
S or resonance degeneracy of rank one. 

From (23) it is apparent that the first Jordan block in E has two cycles of length one 

kl = 2 & ( E l )  =!* (El )  = I (25) 
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all the other Jordan blocks in E have one cycle of eigenvectors of length one 

ki = 1 t I ( E i ) = l  3 G i G n .  (26) 

Substitution of (25) and (26) in expressions (10) and (22) gives the codimension of the 
rank-one degeneracy as six when H is non-symmetric and four when H is symmetric. This 
result may also be expressed as follows: the minimum number of extemal parameters that 
should be varied to produce a degeneracy of two resonances leading to one simple pole 
in the S matrix is four or six depending on whether the quantum system is time reversal 
invariant or not. 

2.4. Resonance degeneracy leading to one simple and one double pole of S 

Let us now consider the case when two eigenvalues of H coincide and its Jordan canonical 
form is non-diagonal. 

As in the previous case, E has U = n - 1 different eigenvalues but now it has only n - 1 
linearly independent eigenvectors. A complete set of n linearly independent vectors may 
be obtained adding to the set of eigenvectors one generalized eigenvector Corresponding to 
Ei . 

In this case, the matrix [ E  - HI-' may be written as 

where [ I )  and (11 are right and left eigenvectors of H corresponding to E l ,  but (11 
and 11) are I ~ f t  and right generalized eigenvectors of H also corresponding to El.  The 
vectors I I ) ,  I I ) ,  13), . . . , In) are the columns of K (or 0) in that order, while the vectors 
(il, (11. (31,. . . (nl are the rows of K-' (or TOT) in that order. All the vectors appearing 
on the right-hand side of (28) are uniquely defined. 

From (28) and (1). it follows that, in this case the poles of the S matrix which become 
degenerate fuse into one simple and one double pole. Hence, we may call this type 
of degeneracy, resonance degeneracy into one simple and one double pole or resonance 
degeneracy of rank two. 

From (27). it is evident that the first Jordan block in E has only one cycle of eigenvectors 
of length two 

kl = 1 ! ' ( E , )  = 2 (2% 
all the other Jordan blocks in E have one cycle of length one, 

ki = 1 t l ( E i )  = 1 3 6 i 6 n. (30) 
These values, when substituted in (IO) and (22), give the codimension of a rank-two 

degeneracy as two when H is both symmetric and non-symmetric. It follows that the 
minimum number of extemal parameters that should be varied to produce a degeneracy 
of two resonances leading to one simple and one double pole in the S matrix is two, 
independently of the time reveml invariant character of the interactions. 
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3. Accidental degeneracy in parameter space 

In the absence of symmetry. degeneracies are called accidental for the lack of an obvious 
reason to explain why two energy eigenvalues, E I  and Ez,  of a typical Hamiltonian should 
coincide. If one embeds the Hamiltonian H in a population of Hamiltonians H(XJ smoothly 
parameterized by N ‘external parameters’ {XI, X z ,  . . .), then degeneracy in the absence of 
symmetry is a geometric property of the hypersurfaces representing the real or complex 
energy eigenvalues in an (N + 2)-dimensional Euclidean space with Cartesian coordinates 
(Xi, Xz, . . . , ReE, Im E ] .  Suppose that, for some set of values of the external parameters, 
the complex energies E1 and E2 coincide, all other energies being different from each other, 
then, for this set of [Xi) values of the external parameters, the hypersurfaces corresponding 
to El and E2 touch one another. A small change in the extemal parameters about these 
values will produce small changes in all the other hypersurfaces which, however, will remain 
well separated. If we are only interested in the behaviour of the energy hypersurfaces in the 
immediate neighbourhood of the crossing, we may suppose that we already know the correct 
eigenvectors of H for all complex eigenenergies except for the two energy hypersurfaces 
the crossing of  which we want to investigate. Using for these last two, two vectors which 
are not eigenvectors but which are chosen to be orthogonal to each other and to all the 
other eigenvectors we obtain a complete basis to represent H. In this basis the effective 
Hamiltonian H will be diagonal except for the elements H Q  and H21. The diagonal elements 
HII and HU are, in general. not equal; Hlz and HZI will also be different from zero. 
Therefore, in the following, we need consider only a pair of unstable states of  the system, 
close in energy, which are mixed by the 2 x 2 effective Hamiltonian Hzxz. To simplify the 
discussion it will be convenient to measure the energies from &, the centroid of the diagonal 
energy terms, defined as, 

A Mondrag6n and E Hernhdez 

E = +(H,1 + Hz2).  (31) 

Then, 

Hzxz = E l z x ~  + X (32) 

and 

where 

It is convenient to write 7 i  in terms of the Pauli matrix valued vector (ur, u~,u,)  as 

where R and I? are real vectors with Cartesian components 

Xi = 4 Re[Tr(Xoi)J 

and 
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The eigenvalues of X are given by 

and the corresponding poles of the S matrix are given by 

E,,* = € 7  E .  (39) 

From (39) we see that E, and E2 coincide when E vanishes. Hence, from (38). the 
condition for accidental degeneracy of two resonances may be written as 

Now, since real and imaginary parts of E should vanish, we get the pair of equations 

These equations admit two types of solution according to whether or not H is a diagonal 
at the degeneracy. 

In the first case X should vanish at the degeneracy and (41) and (42) are only satisfied 
if both Rd and r d  vanish for the same set of values of the extemal parameters. In this case, 
(41) and (42) define a point in parameter space. In the second case, when (41) and (42) are 
satisfied for non-vanishing i?d and r d  these equations define a circle in parameter space. I:? 
this case 7 i d  does not vanish at the degeneracy and the corresponding Hd is equivalent to 
a Jordan canonical form with one Jordan block of rank two and all other Jordan blocks of 
rank one. (Miniahra et ul [23] derived a set of conditions similar to our second case for 
the occukence of an accidental degeneracy of a non-Hermitian Hamiltonian which drives 
an unstable atomic state which decays by photon emission.) 

In the case of stable states, J? = 0, and we recover the usual condition for accidental 
degeneracy of bound states 

= 0 (43) 

which defines a point in parameter space. The diabolic geometry which characterizes 
accidental degeneracies of stable states makes it natural to refer to the degeneracies 
themselves as diabolic points [l,  121. In the next section, it will be shown that in the 
case of accidental degeneracies of unstable states we are also justified in calling the point 
or circle defined by equations (41) and (42) the diabolic point or diabolic circle and, by 
extension, to refer to the degeneracies of unstable states themselves as diabolic points or 
diabolic circles, according to which type of solution we have in mind. 

4. Energy surfaces 

The energy surface in parameter space is defined by equation (38). From this equation, the 
real and imaginary parts of the energy are given by 
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and 
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(45) 

These equations define two hypersurfaces in parameter space. We are interested in the 
shape of the energy surfaces in the immediate neighbourhood of a crossing resulting from 
the accidental degeneracy of two resonant states. 

We shall first consider the accidental degeneracy of two resonant states leading to 
one simple pole in the S mahix. In this case the conditions for accidental degeneracy, 
equations (41) and (42). are satisfied for vanishing R and I', as shown in section 3. The 
effective Hamiltonian should have at least four independent free parameters to produce this 
type of degeneracy. There are only three independent parameters in R, hence r cannot 
be a fixed vector. Furthermore, since I' and R should vary independently of each other 
it is not convenient to represent I? as a vector in the same Euclidean space &3 as R. 
Therefore, in this case, we will understand equations (44) and (45) as defining the energy 
hypersuperface in an eight-dimensional Euclidean space, &g, with Cartesian coordinates 
(X, Y ,  Z, U ,  U, w. Rec, h e ] .  The coordinates ( U ,  U ,  w )  are the Cartesian components of r, 
while (X, Y ,  Z) are the Cartesian components of R. In this way, the crossing should take 
place at the origin, i.e. at the point R = 0 and l' = 0. 

When the Hermitian and anti-Hermitian parts of Z commute the problem simplifies. 
From 

Imci = r[;([(R2 - sr 1 2 2  ) + (R.r)211/2 - ( R 2  - ~r2)11'/2. 

[ R .  U.  $I?. U ]  = i(R x I?) -c 

we see that, when R . U and 
Then, the equations of the energy, (44) and (43, take the simple form 

U commute, R x I? vanishes and R . I' is equal to R r .  

and 

In this particularly simple case the two hypersurfaces representing the real and imaginary 
parts of the energy are double cones lying in orthogonal subspaces with the vertices at the 
origin. 

In general R . U and r * U do not commute, so to study the behaviour of the energy 
hypersurfafesclose to the crossing point we will approach the origin of the coordinates 
keeping ( R  . F ) / ( R T )  fixed and letting R and r go to zero in such a way that the ratio 
R/ r is constant. 

We consider first the case when 

R < f r  (48) 

Re<* = iilrl[+[((l - U)' + 4 & .  P)z)'/z + (1 - q))]1'2 

then the energy equations (44) and (45) may be written as 

(49) 

and 

= r$-i[+{[(i - # + 4 & .  ii)211/z - ( I  - q ) ] ] 1 / 2  (50) 
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with 

2 

0 = ('i") 
and k and f are unit vectors. Expanding the right-hand sides of (49) and (50) in powers 
of 0 and keeping only the first term, we get 

Re€* Y +(k . f )IRI = f ( k  . r ' ) J X z  + Yz + Zz (52) 

and 

I m q . = F y l r l  1 = + I J u ~ + ~ z + w z .  1 

We now consider the case when 

R > ; r  

we write the energy equations (44) and (45) in terms of 

r = ($y 
and 

IIIIS+ = ilRI[;{[(l - <)'+ 4<(k.  f)*]'/2 - (1  -())lip 

we procee IS before, expanding the right-hand sides of (56) and (57) in powers c 
keeping only the first terms we obtain 

Re€+ N & [ R [  = f.JX2 + Y 2  + Zz 

and 

Ime+ N &iri(k f )  = =&6. i ) J ~ 2  + ~2 + ~ 2 .  

Finally, when 

R = ? . r  Z 

the energy equations (44) and (45) take the simple form 

Reeh = + I R l , / m = f m J X 2 + Y Z + Z Z  

and 

(53) 

(54) 

(57) 

' and 

(59) 



5606 A Mondiag6n and E Herndndez 

From (52), (53). (58). (59), (61) and (62) it follows that, close to the crossing, 
the hypersurfaces representing the real and imaginary parts of the energy difference 
6 are double cones lying in orthogonal subspaces The real part of the resonance 
energies El and E2 intersect conically in the subspace of €8 with Cartesian coordinates 
(X, Y, Z, O,O, 0, Re E, 0). Explicit expressions for (X, Y, Z) in terms of the matrix elements 
of the Hermitian part of the mixing effective Hamiltonian are given in (36). The imaginary 
part of the resonance energies E1 and E2 also intersect conically but in a different subspace 
with Cartesian coordinates (0.0.0, U, U, w.O,ImE]. The Cartesian coordinates (U, U, w )  
should be identified with ( F x ,  r,, r,) as given in (37) in terms of the matrix elements of 
the anti-Hermitian part of the mixing effective Hamiltonian. 

Therefore, in the case of a degeneracy of reSonant states leading to one simple pole in 
the S matrix, any non-vanishing Hermitian or anti-Hermitian miwing interaction will move 
the resonance energies away from the degeneracy. There is energy level repulsion and also 
level width repulsion. 

Let us now consider the case of a degeneracy of two resonant states leading to one 
simple and one double pole in the S matrix. In this case the condition for accidental 
degeneracy, equations (41) and (42), are satisfied for non-vanishing values of R and r 
and, as we saw in section 3, we need at least two free parameters in ‘H to bring about the 
degeneracy. For definiteness, we will keep the matrix W of the transition amplitudes fixed 
and let the parameters of the internal effective Hamiltonian 1.I vary. Then 

w + w = r . a  (63) 

is a constant matrix, and r is a fixed vector. To simplify the notation, it is convenient to 
make a rotation in parameter space such that the OZ axis is aligned with r. 

In the case under consideration, equations (44) and (45) define two hypersurfaces in 
a five-dimensional Euclidean space, &S, with Cartesian coordinates (X, Y, Z, Re€, Ims). 
The hypersurfaces representing Re E and Im E are in orthogonal subspaces and touch one 
another only when both Re€ and Imc vanish. It follows that the set of points in the energy 
hypersurfaces corresponding to a degeneracy are all in the subspace €3 with Cartesian 
coordinates (X, Y, 2.0.0). 

The equation 

R-r=O (64) 

defines a plane n in &3 and a hyperplane I? in 6 with Cartesian coordinates 
(X, Y . O , R ~ E , I ~ E J .  When R is orthogonal to I?, the equation 

(65) 

for fixed r, defines a circle in the l7-plane. This is the diabolic circle. 
In order to examine the energy hipersurface in the neighbourhood of the crossing, 

it is convenient to consider the hypersurface E resulting from the intersection of the e- 
hypersurface and the ft-hyperplane. The equation of this hypersurface is obtained putting 
R . l? = 0 in (44) and (45). Then 

~2 - ir2 = 0 
4 

Re& = & [ + ( [ ( R ~  - $r2)2~r/2 + ( R ~  - ~ P ) I I ~ ’ ~  (66) 

and 

I ~ L  = F [ ; [ [ ( R ~  - ;rz)2]1/2 - ( R ~  - $rz)]]l~. (67) 
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Hence, when RZ > iP2,  

Re& = f ( R 2  - +rZ)’/’ 

and 

Im& = 0. 

Similarly, when R2 < 
Re& = 0 

and 

Let I 

I,,,?+ = F(ir2 4 - R ~ ) ~ / ~ .  

ramine these relations in more detail. To take ntage of the sym 
the problem we introduce cylindrical coordinates in  parameter space., 

X=Acos@=$Re[H1z+Hz11 

Y = Asin@ = -iIm[H,z - Hz,] 

Z = m = i R e [ H 1 l - H = ]  

r , = ~ c ~ ~ x = - I m ~ H , ~ + H ~ ~ i  

r ,=nsinx=-Re[Hlz-Hz,I  

r - - y = - -  Im[Htl - Hzz~ .  

The orthogonality condition (42) may he expressed as 

L -  

m = y- ’Aa COS(@ - x) 
then the difference RZ - $rz becomes 

R Z - i r Z = ( A Z - i - z  4Y ) I 1  + Y - 2 a Z C o s 2 ( @ - x ) l  

with 

1 + a Z / y 2  
1 + (a2/y2)  cosz(@ - x) ’ 7 2  = yz 

(71) 

etry  of 

(79) 

(80) 

According to (70) and (71) for each fixed value of (6 - x), when A is non-vanishing 
but smaller then $7, 2 is purely imaginary, then 

Re E1 = Re E2 = Re& (81) 

and 

(82) I Im El,z  = -TU f [(ip2 - A ’ ) [ ]  f y - Z ~ Z ~ ~ ~ 2 ( @  - x))]”~ 
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Figure 1. In the case of a degeneracy of two resonances leading to one simple and one 
double pole in thc S matrix, the surface representing the imaginary part of the difference of the 
lwo energies in parameter space is a sphere. The upper and lower hemispheres represent the 
imaginary parts of the two neighbouring energies El and E l .  The diabolic circle is the equator, 
where Im Er = h E 1 .  In the regime of level width amaction A2 c a?'. When the magnitude 
of the mixing interadion A increases from zero to some value smaller than - the poles of the 
S matrix in the second sheet of the complex energy plane, initially at the posihon marked with 
dots, move along a svaight line panilel to the imaginary axis to the final positions marked with 
crosses. In pyameter space the system moves in the energy surface from the poles towards the 
equator along a meridian circle. 

I ? :  

where U = -2Im&. 
As long as A* c ifz, there is no degeneracy. When A increases, the difference between 

the two half-widths decreases. This is the regime of level width attraction [15,16]. For 
each fixed value of A. we have two complex resonance energies, El and Ex, and two poles 
of the S matrix at the corresponding energies El and E2 in the unphysical sheet of the 
complex energy plane. When A increases, the poles of the S matrix approach each other 
moving along a straight line parallel to the imaginary axis, see figure 1. 

In terms of parameter space, when A < ai., RZ < $rz, and Z is purely imaginary, 
equation (71) becomes the equation of a hypersphere of radius iI', see figure 1, 

This sphere is embedded in the subspace E4 of with Cartesian coordinates 
{X, Y, Z.0, h e ) .  The upper hemisphere represents i- as a function of (X, Y, Z). The 
lower hemisphere corresponds to Z+. At the poles of the sphere, A = 0, the mixing 
interaction vanishes and the system is unperturbed. 

At the equator, when 

the energy difference 2 vanishes, the two energy eigenvalues are equal and the system 
becomes degenerate. Hence, the equator of the sphere is the diabolic circle. In the complex 
energy plane, when (84) holds, the two poles of the S matrix collapse into one single pole 
and one double pole, located midway between the initial positions of the unperturbed poles. 

When 

A >  ff  
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the energy difference is purely real, and (68) becomes the equation of a hyperbolic cone of 
‘circular’ cross section 

Xz + Yz + Z z  -(Re€)* = +r2 (86) 

when A increases, Re€ increases. This is the regime of level repulsion. In the complex 
energy plane, the corresponding poles of the S mahix repel one another and move away 
along a straight line parallel to the real axis, see figure 2. 

Re E 

Figure 2. In the case of a degeneracy of two resonances leading to one simple and one double 
pole in the S-mahix, the surface representing the real p m  of the difference of the two energies 
in p m e t e r  space close to the degeneracy has the shape of a hyperbolic cone of circular cross 
section or diabolic. At the nmowcst cross section or waist of the diabolic the two wonances 
are degenerate. The waist of the cone is the diabolic circle. In the regime of level energy 
repulsion A2 > a?’. When the magnitude of the mixing interaction A increases from the $? 
to some value larger than a $F, the poles of the S matrix in the second sheet of the complex 
energy plane move away from the degeneracy along a stmight line parallel to the real axis. In 
p m e t e r  space Re E2 and Re El move up and down respectively on the hyperbolic cone away 
from the diabolic circle. 

The narrowest cross section or ‘waist’ of the cone occurs when Re€ vanishes, i.e. when 
the two complex energy eigenvalues are equal and the two resonant states are degenerate. 
Hence, the waist of the cone is the diabolic circle. 

In brief, we have seen that the intersection of the energy hypersurface with the fI- 
hyperplane which contains the crossing points is a hypersurface which has two parts which 
lie in orthogonal subspaces. The surface representing the real part of the energy has the 
shape of an open sandglass or a diabolic, with its waist at the diabolic circle. The surface 
representing the imaginary part of the energy is a sphere with the equator at the diabolic 
circle. The two surfaces are embedded in orthogonal subspaces but touch each other at all 
points in the diabolic circle. 

5. Resolts and conclusions 

In order to study the conditions for the occurrence of an accidental degeneracy of two 
resonances, we considered explicitly the mixing of resonant states by a Hermitian interaction. 
We generalized the level repulsion theorem from bound states to a system of interacting 
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resonances and obtained the minimum number of free parameters in the mixing Hamiltonian 
necessary to produce a degeneracy of resonances in the absence of symmetsy. We give 
general expressions for the codimension of any degeneracy of resonances in parameter 
space. 

We find that two types of accidental degeneracy of two resonances may happen according 
to whether or not the effective complex Hamiltonian at the degeneracy may be brought to 
diagonal form by a similarity transformation. 

In the first case, the number of free parameters in the mixing Hamiltonian necessary to 
produce a degeneracy is four when the mixing interaction is time reversal invariant and six 
when it is not. As in the case of degeneracies of bound states, in this case the two poles of 
the S matrix corresponding to the energies which become degenerate merge into one simple 
pole. The hypersurfaces representing the real and imaginary parts of the resonance energies 
in parameter space are double cones lying in orthogonal subspaces with their vertices located 
at the same point, which, for this reason, might be called a double diabolic point In this 
case, the level energy difference and the level width difference of the mixed states are never 
smaller than the corresponding differences of the unmixed states. There is energy level 
repulsion and level width repulsion. 

In the second case, the minimum number of free parameters in the effective Hamiltonian 
necessary to produce a degeneracy is two irrespective of the time reversal character of the 
interaction. The two poles of the S matrix corresponding to the energies which become 
degenerate fuse into one simple pole and one double pole at the degeneracy. Neighbouring 
energy surfaces are connected at all points in a circle with diameter equal to the difference in 
the half-widths of the unperturbed resonant states which are mixed. This is to be contrasted 
with the degeneracy of stable states in which case neighbouring surfaces are connected at a 
single conical or diabolic point. Close to the degeneracy, the energy surface has two parts 
lying in orthogonal subspaces. The surface representing the real part of the energy has the 
shape of an open sandglass or hyperbolic cone of circular cross section, its waist being at 
the diabolic circle. The surface of the imaginary part of the energy is a sphere with the 
equator at the diabolic circle. It has to be noted that, contrary to what happens in the bound 
state, in this type of resonance degeneracy, level energy repulsion does not always hold. 
When the spacing of the unperturbed levels is small, the finiteness of the widths removes 
the energy level repulsion and a purely off diagonal Hermitian interaction may produce 
level width attraction. This effect had been noted previously by von Brentano [ 15,161. 

Finally, let us notice that, for complex effective Hamiltonains, the codimension (two) 
of this type of resonance degeneracy is equal to the codimension of the degeneracies of 
bound states of a closed system driven by a real Hamiltonian. This feature might be 
related to the agreement between the short-distance behaviour of the nearest-neighbour 
spacing distribution derived from the study of irregular closed systems driven by Hermitian 
Hamiltonians [8,9] and the nearest-neighbour spacing distribution obtained from the 
observation of series of resonances, i.e. metastable quantum states, in  nuclear spectra [ 101. If 
this were so, it might be an indication that accidental degeneracies of resonances leading to 
one simple plus one double pole in the S matrix might be the rule rather than the exception. 

In the case just discussed, the topological structure of the energy surfaces at the complex 
energy crossing differs from that of bound-state crossings. The diabolic point obtained in 
the Hermitian case blows up into a diabolic circle and a sphere whose radius depends 
upon the magnitude of the difference of the unperturbed level widths and the magnitude of 
the anti-Hermitian part of the mixing interaction. This new feature gives rise to new and 
interesting effects [23,24]. Elsewhere [241 we have discussed the generalization of Berry’s 

A Mondrag6n and E Herncfndez 
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phase from bound to resonant states resulting from the different topological structure of the 
energy surfaces at the crossing of complex resonance energies. 
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